

A new class of tumor targets for next-generation cancer immunotherapies

Non-Confidential Presentation

Mnemo Therapeutics: an integrated end-to-end novel target discovery and validation platform

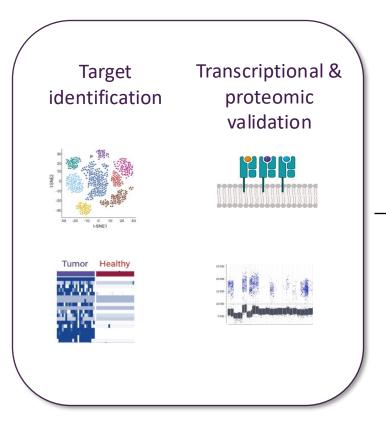
Discovering druggable targets, developing immunotherapies

Discovery Hub

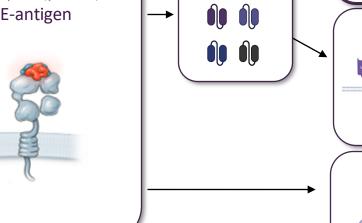
A first-in-class, end-to-end validated, proteogenomic dark genome and alternative splicing target discovery platform

Target Library

A unique target portfolio of pan-cancer and tumor-specific actionable targets for immuno-therapy


Immunotherapy Modalities

Unique opportunities for developing multi-modality immunotherapies


T-cell engagers

Cell therapy

Vaccination

Peptide Major
histocompatibility
Complex (pMHC)
E-antigen

TCR-mimic

scFv

Lead TCR-scFv⁽¹⁾ binders for TCE development

(1) single chain variable fragment

High efficacy and persistenceenhancing CAR-T asset

Validated peptide lists for indication-specific, off-the-shelf dark antigen vaccines

Company Overview

Proprietary Technology Platform

Differentiated end-to-end target discovery platform for immuno-oncology, from discovery to validation

Key Facts

Founded December 2018

Institutional investors:

Non-dilutive funding from

bpifrance

Strategic academic partnership:

Assets

- Lead binders for a highly recurrent pMHC E-antigen in glioblastoma (GBM)
- Portfolio of multi-solid cancer targets
- Validated cancer E-antigens for high coverage cancer vaccine development
- Epigenetic reprograming technology for highly persistent, exhaustion-resistant CAR-T cells

Mnemo Team

Dieter Weinand Chairman of the Board

Benoit Durand-Barracand Chief Executive Officer

Sebastian Amigorena, PhD Scientific Co-Founder and CSO

MNEMO'S UNIQUE TECHNOLOGIES AND TARGETS ARE PROTECTED BY: (as of September 2024)

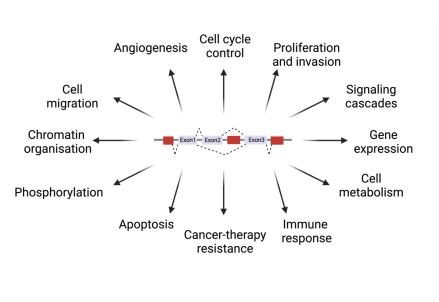
Patent families worldwide

Alternative and non-canonical splicing are a source of unexploited druggable and tumor-specific isoforms

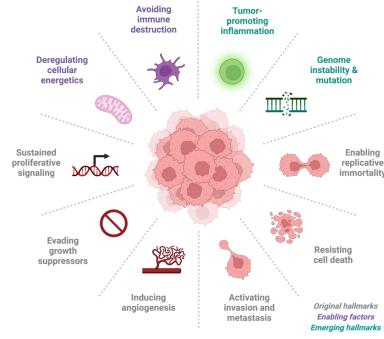
Alternative splicing expands the cellular proteome by 10 to 100-fold

Non-canonical splicing

(500K-2M isoforms)


Alternative splicing (200-300K isoforms)

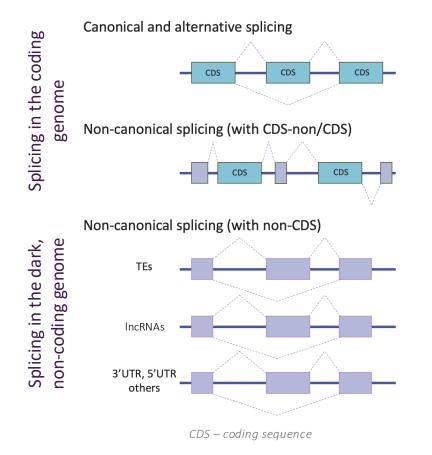
Canonical splicing

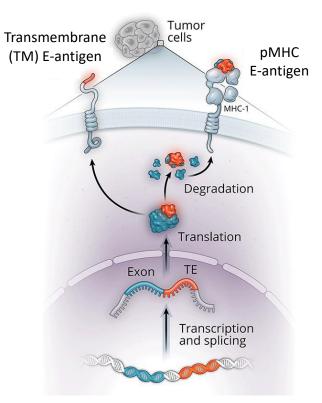

(30-100K isoforms)

Alternative splicing

regulates cell functions

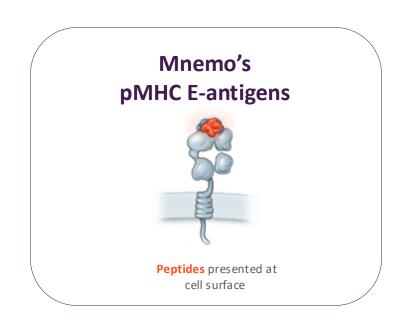
Alternative splicing is deregulated in cancer, revealing tumor-specific protein isoforms




Splicing targets are druggable and can be tumor specific

Mnemo's unique dark genome splicing platform discovers a new class of tumor-specific targets for immunotherapy: E-antigens

- E-antigens are a product of epigenetic dysregulation and non-canonical splicing
- They are highly tumor specific (including high unmet medical need indications) and shared between patients, due to recurrent splicing defects in tumors
- E-antigens include new transmembrane isoforms (TM E-antigens) and new peptides presented by HLA (pMHC E-antigens)


E-antigens represent a new class of tumor-specific targets shared among large populations of cancer patients

Non-coding Genome

E-antigens are optimal tumor targets:

- More tumor-specific than conventional Tumor Testis Antigen (TTAs)
- More recurrent in patients than mutational or frame-shift antigens

	Point Mutations	Tumor Associated Antigens	E-Antigens
Tumor specific	Story September 1	genteriorense	,
Tumor coverage	Novemberson		special primary
Patient recurrence	powerone	+	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Immunopeptidomics (pMHC only)	genoverno	and the second	ppone
T-cell responses in cancer patients (pMHC only)	November 2000		provide receive

Coding Genome

Two recent publications from the Amigorena lab describe pMHC Eantigens in cancer derived from dark genome and non-canonical splicing

Non-canonical splicing junctions produce peptides presented by HLA (E-antigens) E-antigens are protective in mice, and immunogenic in cancer patients

ONLINE COVER: Tumor-infiltrating Lymphocytes on JET Patrol. This month's cover depicts T lymphocytes specific for tumor neoantigens near a cancer cell (yellow) displaying neoantigen peptides on a subset of its cell-surface MHC molecules. JETs (Junctions between Exons and Transposable elements) are a new class of cancer-associated neoantigens made by tumor cells as a result of noncanonical mRNA splicing linking exons to transcripts from transposable elements. Merlotti et al. identified recurrent JETs in human lung tumors and the presence of CD8* T cells specific for JET-encoded epitopes in cancer patients. In a companion paper, Burbage et al. used mouse models to demonstrate that tumor-specific expression of IETs is under epigenetic control.

Credit: Alexis Finkbeiner/Mnemo Therapeutics

Also see:

- Bonté et al (2022) Cell Reports 🙋
- > Arribas et al (2024) Cell 🔊

SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

CANCER IMMUNOLOGY

Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements

Marianne Burbage 1++, Ares Rocañín-Arjó 1+, Blandine Baudon 1, Yago A. Arribas 1, Antonela Merlotti¹, Derek C. Rookhuizen¹, Sandrine Heurtebise-Chrétien¹, Mengliang Ye¹, Alexandre Houy², Nina Burgdorf¹, Guadalupe Suarez¹, Marine Gros¹, Benjamin Sadacca^{1,3,4}, Montserrat Carrascal⁵, Andrea Garmilla¹, Mylène Bohec⁶, Sylvain Baulande⁶, Bérangère Lombard⁷, Damarys Loew⁷, Joshua J. Waterfall^{3,4}, Marc-Henri Stern², Christel Goudot¹, Sebastian Amigorena¹*

SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

CANCER IMMUNOLOGY

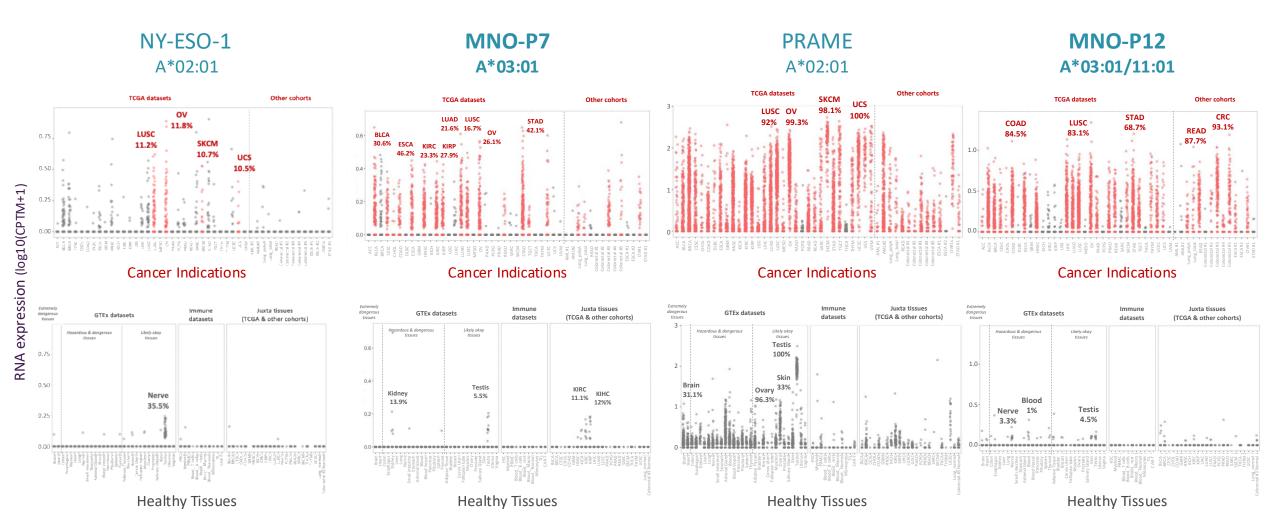
Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer

Antonela Merlotti^{1†‡}, Benjamin Sadacca^{1,2,3}†, Yago A. Arribas^{1†}, Mercia Ngoma^{1‡}, Marianne Burbage¹, Christel Goudot¹, Alexandre Houv², Ares Rocañín-Arjó¹, Ana Lalanne^{4,5}, Agathe Seguin-Givelet^{6,7}, Marine Lefevre⁸, Sandrine Heurtebise-Chrétien¹, Blandine Baudon¹, Giacomo Oliveira^{9,10}, Damarys Loew¹¹, Montserrat Carrascal¹², Catherine J. Wu^{9,10,13}, Olivier Lantz^{1,4,5}, Marc-Henri Stern², Nicolas Girard⁶, Joshua J. Waterfall^{2,3}§*, Sebastian Amigorena¹§*

Discovery hub and targets

A best-in-class discovery hub for dark genome and unannotated splicing antigens

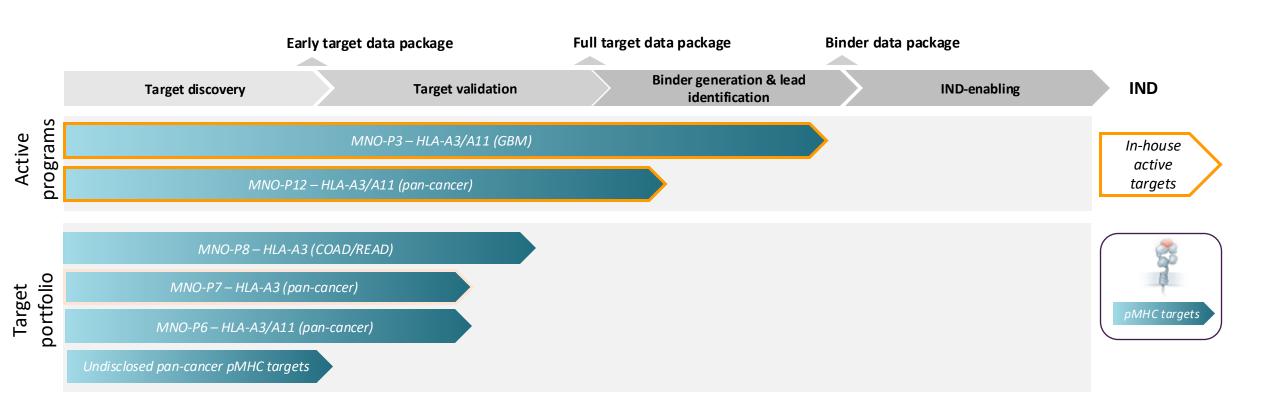
Mnemo has validated its end-to-end discovery workflow, which integrates transcriptomic, proteomic and wet lab techniques


proteomics

Target discovery MS Immunopeptidomic validation **Target nomination Bulk RNAseq** pMHC E-antigen **Immunopeptidomics** scRNA Seq Identify E-antigen transcripts > Validate transcript expression Nominate lead candidates Assess surface expression by

Mnemo's pMHC targets show high tumor-specificity in high proportions of patients and are not expressed in healthy tissues

RNA expression profiles of "conventional" surface targets exhibit medium / no tumor specificity



Active programs for TCE development

A pipeline of tumor-specific targets in multiple cancer indications

• Active programs focus on highly tumor-specific, highly recurrent targets in major cancer indications with strong medical needs

MNO-P3 is a highly specific pMHC target for glioblastoma, druggable by immunotherapies

HLA-A*03 and HLA-A*11

First-in-class Dark Genome pMHC target in Glioblastoma

High recurrence in GBM patients: 25-30% US & EU and 40-50% CN

dPCR-based assay & HLA-typing for patient selection

One lead binder with in vivo efficacy

Early target data package

Extended target data package

Extended binder data package Full target data package

Target discovery

Target validation

Binder generation & lead identification

TCE modality selection & IND-enabling

MNO-P3 – HLA-A*03 (GBM)

IND in 2026

MNO-P3 is a first-in-class pMHC target in glioblastoma

Glioblastoma has one of the highest levels of unmet need across all of oncology

- More than 79,000 incident cases of GBM in 2023¹, expected to rise to 86,900 cases by 2028, especially A*11 high markets (Asia)
- Average survival lower than 8 months

MNO-P3 is expressed in aggressive non-curable Grade-4 gliomas

Oligodendroglioma, IDH-mutant and 1p/19q codeleted, grade 2 or 3

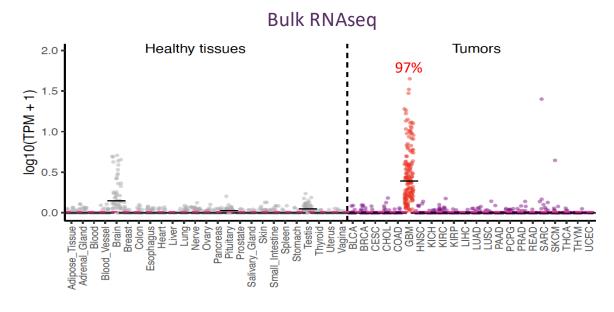
Astrocytoma, IDH-mutant, grade 2 or 3 Astrocytoma, IDH-mutant, grade 4

Glioblastoma, IDH-wildtype, grade 4

Adult-type diffuse gliomas

- Glioblastoma is an important unmet medical need for immunotherapies
- Bispecific antibodies and CAR-Ts are under early clinical investigation
- Paucity of high quality targets hampers clinical response
- Manufacturing costs remain a limiting factor for clinical development
- Mnemo's MNO-P3 program offers an off-the-shelf first-in-class therapeutic solution

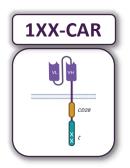
¹16 countries covered in Global Data's epidemiology forecast, Global Data Reports 2023; Alsajjan & Mason, 2023, Curr Oncol; Ajeeb & Clegg, 2023, Adv Drug Deliv Rev Testa et al, 2024, Cancers


MNO-P3 expression is highly brain tumor-specific

- Dark Genome-derived peptide, expressed in >97% of GBM tumors with very low healthy brain tissue expression
- MNO-P3 is presented by multiple HLA alleles: HLA-A*03:01 (25-30% US & EU) and HLA-A*11:01 (40-50% CN)

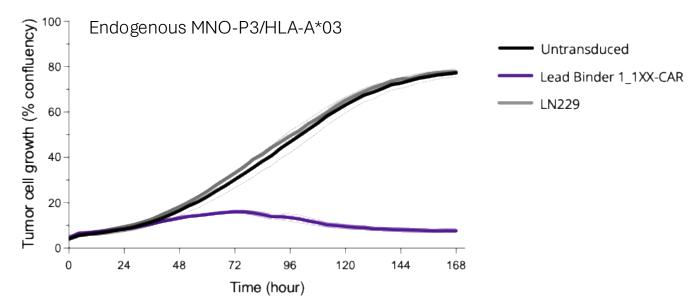
Bonté et al. Cell Rep. (2022) GBM tumor samples Darmanis et al. TE expression analysis scRNAseq TE signature validation HLA-I peptide identification

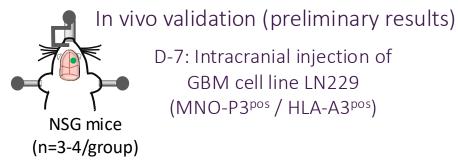
MNO-P3 identification


Immunopeptidomics

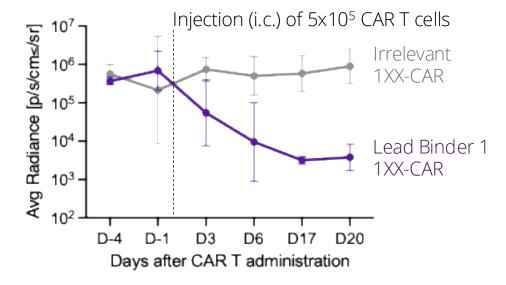
Dataset	Sample type	MNO-P3 detection
Shraibman et al (A*03)	GBM sample	Yes
Bartok et al (A*03)	SKCM cell line	Yes
Daoy-HLA-A*11	MB cell line	Yes
HLA Ligand Atlas	Normal brain tissue	No

- ➤ MNO-P3 is expressed in aggressive non-curable Grade-4 gliomas (GBM)
- ➤ Safe profile with very low healthy tissue expression
- MNO-P3 expression is only detected in neoplastic cells in single-cell RNA-seq GBM datasets
- MNO-P3 peptide is detected in brain tumour and not in healthy samples


MNO-P3 targeting CAR T cells promote rejection of GBM cell lines in vitro and in vivo

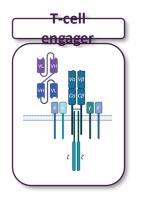


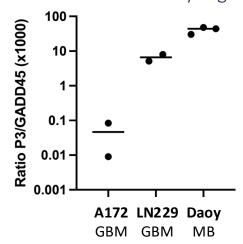
CAR long CTL assay with low E:T ratios 7 days, Fluorescence live imaging


Tumor cell growth

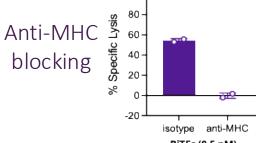
100% killing of target cells in vitro

D-7: Intracranial injection of GBM cell line LN229 (MNO-P3pos / HLA-A3pos)

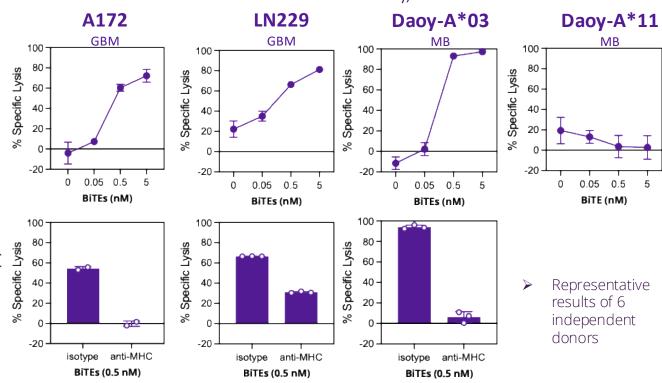


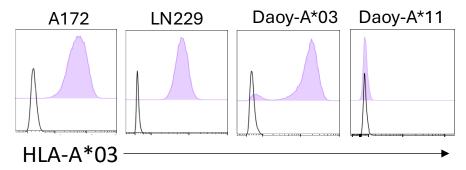

In vivo rejection of intracranial GBM tumors

MNO-P3 targeting BiTEs promote specific cytotoxicity of brain tumor cell lines



MNO-P3 expression validated in brain tumor cell lines by Digital PCR




BiTF titration

Lead Binder 1-BiTE cytotoxicity 48h Bioluminescence assay, E:T ratio 5:1

HLA-A*03 expression by flow cytometry

- MNO-P3/HLA-A*03 targeting BiTEs promote specific cytotoxicity of brain tumor cells with both peptide pulsing and endogenous MNO-P3 expression
- Lead binder cytotoxicity is dose-dependent and HLA-specific
- Similar results with Lead Binder 2
- "Novel clinical TCE format" under evaluation

MNO-P12 is a highly tumor-specific pan-cancer target

MNO-P12

HLA-A*03 and HLA-A*11

Dark Genome derived pMHC target

Highly tumor-specific in multiple solid tumors (70-90% recurrence in LUSC, COAD, READ...)

>600,000 (EU & US) and >1,100,000 (Asia) patient cases per year (A*03/A*11)

PCR-based companion assays (quantitative and single cell level) in development

TCR-mimic scFv clones identified by phage display screens

Early target data package Extended target data package

Extended binder data package Full target data package

Target discovery

Target validation

Binder generation & lead identification

TCE modality selection & IND-enabling

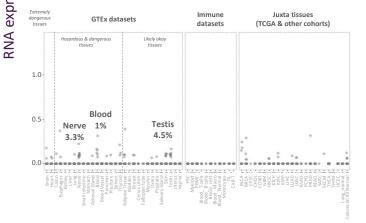
MNO-P12 – HLA-A*03 (Pan-cancer)

IND in 2027

MNO-P12 is a highly tumor-specific pMHC target for multiple cancers

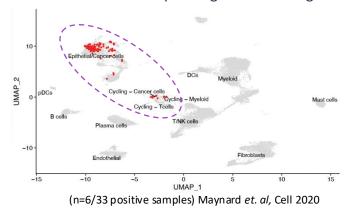
- MNO-P12 is a peptide derived from a *IncRNA* invovled in cancer progression
- MNO-P12 is presented by multiple HLA alleles: HLA-A*03:01 (25-30% US & EU) and HLA-A*11:01 (40-50% CN)

Discovery Hub

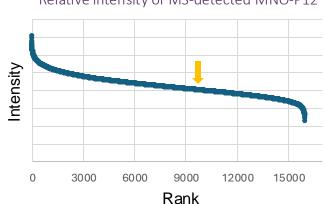

MNO-P12

RNA expression profile

Expression in tumors

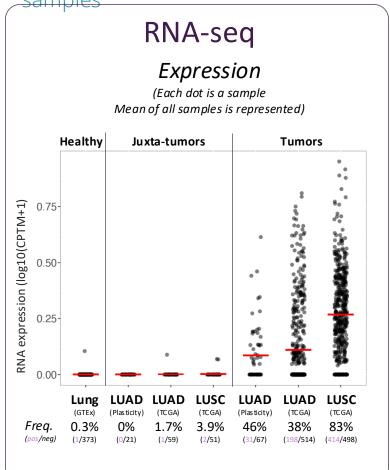


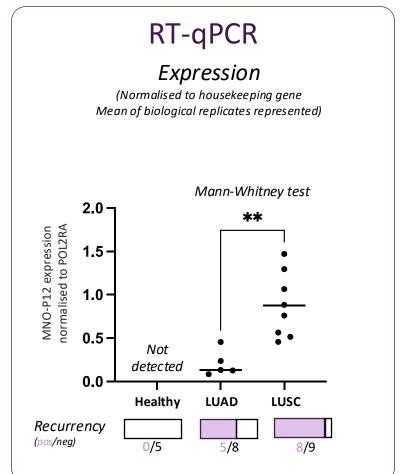
Expression in healthy tissues

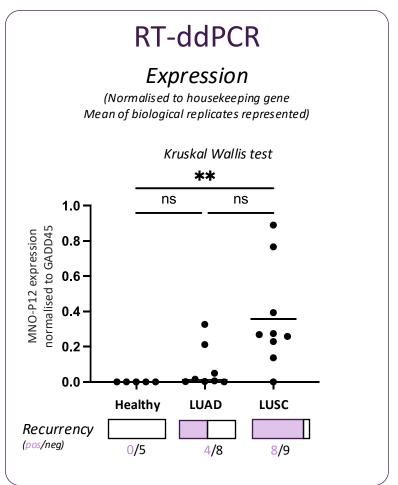

Single-cell RNAseq (scRNAseq)

Immunopeptidomics

Relative intensity of MS-detected MNO-P12


- ➤ MNO-P12 splicing junction is highly recurrent in multiple cancer indications, (Lung / Gastro-intestinal / Ovarian cancers...)
- ➤ MNO-P12 transcript has been found in malignant cells only by scRNAseq in Lung Cancer and Melanoma
- ➤ MNO-P12 peptide is presented by HLA-A*03 on the surface of tumor cells and can be detected by mass spectrometry


Expression of MNO-P12 splicing junction is highly tumor-specific



• MNO-P12 splicing junction was assessed in healthy lung (n=5), LUAD (n=8) and LUSC (n=9) patient

samples

- MNO-P12 junction expression is tumor-specific, not detected in healthy samples
- MNO-P12 junction expression is increased in LUSC over LUAD tumor samples

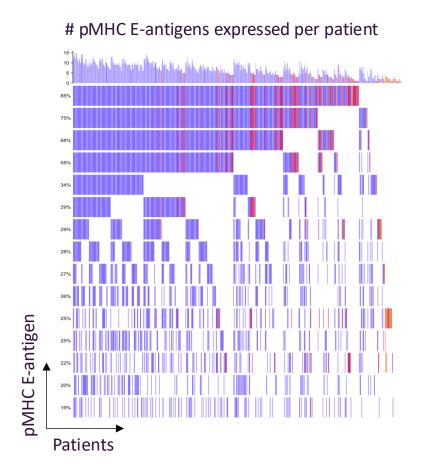
Cancer Vaccines

Mnemo's novel pMHC E-antigens can also be used to develop cancer vaccines

- pMHC E-antigens are highly recurrent and tumor-specific
- E-antigens are all MS-validated
- Novel and proprietary peptide bank generated across cancer indications and HLA alleles
- High patient coverage with a small pool (10-20) of pMHC E-antigens in main HLA alleles

Identification of tumorspecific transcripts

HLA-presented antigens

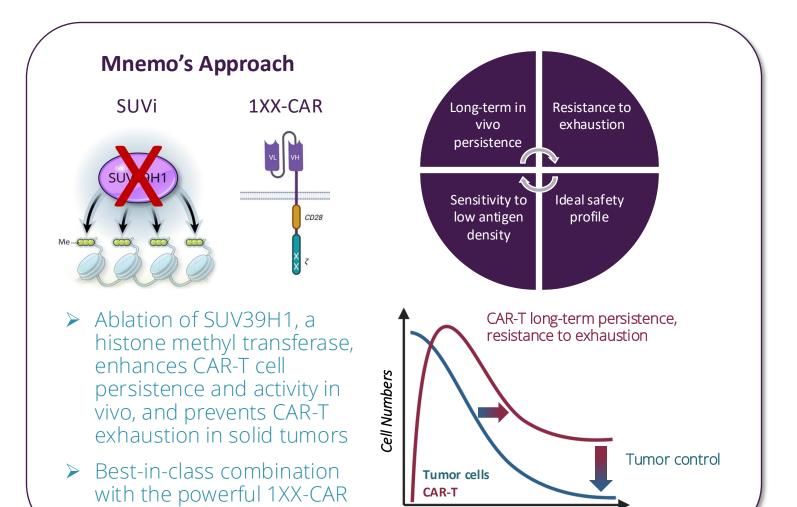

Bank of multi-allelic public dark genome validated antigens

NeoJunctions

Mass Spectrometry
Immunopepidomics

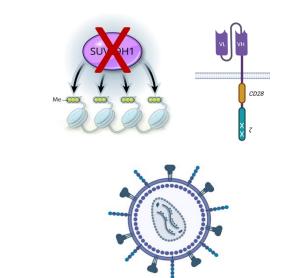
Exon 1 Exon 2 Exon 3 Exon 3 In a large state of the control of t

Dark genome cancer vaccine with high patient coverage in lung, ovarian, and colon cancer



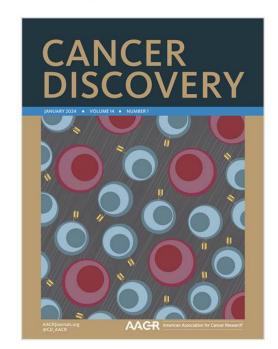
CAR-T cells

Mnemo's technology for CAR-T epigenetic reprograming enhances longterm protection in pre-clinical solid tumor models


Time

1XX-SUVi can be used in:

- Autologous setting
- Allogeneic (off-the-shelf) setting
- In vivo cell engineering
- NKs, iPSCs, TILs


Two recent publications from Amigorena and Sadelain labs demonstrate robust CAR-T epigenetic reprograming by SUV39H1 deletion

On the cover of Cancer Discovery Jan 2024 issue:

Volume 14, Issue 1

1 January 2024

Long-Term CAR-T Function in Solid Tumors Is Enhanced by SUV39H1 Ablation

Limited chimeric antigen receptor (CAR) T cell expansion and persistence contributes to the failure of adoptive T cell therapies in patients with cancer. López-Cobo, Fuentealba, and colleagues demonstrate that CAR T cell stem/memory differentiation and persistence can be epigenetically enhanced via ablation of SUV39H1, a histone methyltransferase. SUV39H1 gene-edited BBz-CAR T cells showed early reprogramming into stem-like populations with decreased expression of dysfunction genes, increased long-term in vivo persistence, and also protected mice against tumor relapses and rechallenges in solid tumor models, encouraging the use of SUV39H1 inactivation in adoptive cell therapy products.

Lopez-Cobo et al (2024) 🙋

See article, p. 120.

SUV39H1 Disruption Promotes CART Cell Efficacy

Chimeric antigen receptor (CAR) T cells have demonstrated clinical success, but many patients will eventually relapse, in part, due to poor T cell function and persistence. Jain, Zhao, and colleagues showed that genetic disruption of SUV39H1, which encodes a histone-3, lysine-9 methyl-transferase, leads to enhanced early expansion, long-term persistence, and antitumor efficacy in leukemia and prostate cancer models. Moreover, upon multiple rechallenges, SUV39H1-edited CAR T cells had improved expansion and tumor rejection while also having limited exhaustion and reduced inhibitory receptors. Together, these results suggest that CAR T cell epigenetic programming could lead to improved anti-cancer adoptive cell therapies.

Jain et al (2024) 🙋 See article, p. 142.

Executive summary

Executive summary

> Mnemo has a cutting-edge end-to-end validated platform, providing multiple partnering opportunities

Discovery Hub

A first-in-class, end-to-end validated, proteogenomic Dark Genome target discovery platform

Tumor targets

A unique target portfolio of pan-cancer and tumor-specific actionable dark genome targets for immunotherapy

Immunotherapy Modalities

Unique opportunities for developing T-cell engagers, cancer vaccines and CAR T cells

Assets:

- End-to-end validated, proteogenomic dark genome target discovery platform
- Lead and backup binders for a highly recurrent pMHC E-antigen in GBM
- Portfolio of multi-solid cancer targets
- Validated cancer E-antigens for high coverage cancer vaccine development
- Epigenetic reprograming technology for highly persistant, exhaustion resistant, CAR-T cells

Thank you!

www.mnemo-tx.com

Q1 2025